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Introduction

The “Time-resolved Spectral Optical Breast Tomography ™ research project aims to develop a near real-
time three-dimensional (3D) spectral tomographic imag ing algorithm with use of a transport model based
on radiative transfer and light of multiple wavelengths. This project in the current reporting period
involves the theoretical modeling of photon migration in tissue using the cumulant solution to radiative
transfer and implementing an enhanced 3D tomographic image reconstruction algorithm. Significant
advances in both fronts were made during the current reporting period.

Body
The tasks performed and the progress made during the current reporting period include the theoretical

modeling of photon migration in tissue using the cumulant solution to radiative transfer and implementing
enhanced 3D tomographic image reconstruction algorithms.

Theoretical modeling of photon migration in tissue

We extended the photon transport model for light migration in turbid media based on a cumulant
approximation to radiative transfer to a bounded medium with planar geometries (Task 1.1). This
extension makes the cumulant model more suitable in practical applications which always involve finite
geometries. This cumulant model of photon migration was demonstrated to agree much better with the
Monte Carlo simulation than the conventional diffusion approximation at early times while both
approximations agree well with the Monte Carlo simulations at later times.[1]

We enhanced the 3D tomographic image reconstruction algorithms [2, 3] by using the new cumulant
transport model (Task 1.2). By scanning a point source on the grids of the input plane of a slab and
measuring light intensity on a detector array on the exit plane of the slab, a set of four-dimensional (4D)
data is formed. A near real-time image reconstructi on is obtained by performing a hybrid-dual-Fourier on
the 4D data set.[4, 5, See Appendix 1 and 3] Im provement in the modeling accuracy was achieved.

To access the efficacy of a linear inversion scheme in image reconstruction of human breasts, we also
studied the nonlinear effect of the multiple passages of an absorption inhomogeneity of finite size deep
inside a turbid medium on optical imaging using the cumulant solution to radiative transfer (Task 1). We
derived the analytical nonlinear correction factor which agrees excellently with the predictions from the
Monte Carlo simulations. We concluded that the effect of the nonlinear multiple passages of an
absorption site on optical imaging only becomes appreciable when the size of the inhomogeneity reaches
10/, (ten times of mean free transport paths) or larger for human tissues. [6, See Appendix 4]

Implementing of the enhanced 3D tomographic image reconstruction algorithm

The non-iterative 3D tomographic reconstruction algorithm (hybrid-dual-Fourier tomography) was
implemented (Task 1.2). The reconstruction uses fast Fourier transforms (FFT) and is fast. A complete
reconstruction of 32 x 32 x 20 voxels is within few minutes using 1GHz CPU.

We studied the relation between the appropriate re gulation and the noise presented in measurement (Task
1.4). We found the regularization parameter is linke d directly to the prior signal to noise ratio. We
provided evidence that proper modeling of the noise and appropriate regularization improves the quality
of image reconstruction.[7, See Appendix 5]

We are working on including of multiple wavelengths of probing light in our tomographic imaging
algorithms. ‘ ‘




Key Research Accomplishments

* Extended cumulant solution of radiative transfer to planar geometries making it more suitable for
practical applications which involve finite boundaries.

* Developed and enhanced the 3D tomographic image reconstruction algorithm by using the
cumulant transport model.

» Developed the criterion of the optimal regulati on parameter for inverse image reconstruction
related to the noise presented in measurements.

* Derived the nonlinear correction factor of multiple passages of an absorption inhomogeneity by a
photon for optical imaging and provided a measure of the efficacy of linear inversion schemes.

Reportable Outcomes
Journal Papers:

1. Cai, W., M. Xu, and RR. Alfano. Three dimensional radiative transfer tomography for turbid
media. in IEEE JSTQE. 2003 (to appear in press)
2. Xu, M., M. Lax, and R.R. Alfano, Light anomalous diffraction using geometrical path statistics

of rays and gaussian ray approximation. Opt. Lett, 2003. 28: p. 179-181.

Presentations and Proceeding Papers:

3. Xu, M., W. Cai, and R.R. Alfano, Three dimensional Hybrid-Dual-Fourier tomography in turbid
media using multiple sources and multiple detectors, in Third inter-institute workshops on diagnostic
optical imaging and spectroscopy: the clinical adventure. 2002: National Institute of Health, Bethesda,
MD

4, Xu, M., W. Cai, and R.R. Alfano. Nonlinear multiple passage effects on optical imaging of an
absorption inhomogeneity in turbid media. in European Conference on Biomedical Optics: Photon
migration and Diffuse-light imaging . 2003

Manuscripts:
5. Xu, M., etal., Prior information and noise in three-dimensional optical image reconstruction.

Conclusions ’

The work carried out during the current reporting period builds on and affirms some of our earlier
inferences and leads to the following conclusions. First, the cumulant transport model provides a more
accurate model than the conventional diffusion model for the description of light propagation in turbid
media such as human breasts. Second, the optimal regularization of image reconstruction depends on the
noise presented in the measurements; proper modeling of the noise and appropriate regularization
improves the quality of image reconstruction. Third, the nonlinear effect of the multiple passages of an
absorption site by a photon on optical imaging only becomes appreciable when the size of the
inhomogeneity reaches 10/, or larger in human tissues. Fourth, the theoretical formalism and computer

algorithm for 3D tomographic image reconstruction s hows (with simulated data) the potential to provide
fast 3D images of the scattering and absorption objects at various depths in turbid media.
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Three dimensional radiative transfer tomography for turbid media
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Abstract

The photon distribution, as a function of position, angle and time, is computed using the
analytical cumulant solution of the Boltzmann radiative transfer equation (RTE). A linear forward
model for light propagation in turbid media for three dimensional (3D) optical tomography is
formed based on this solution. The model can be used with time resolved, CW, and frequency-
domain measurements in parallel geometries. This cumulant forward model (CFM) is more
accurate than that based on the diffusion approximation of RTE. An inverse algorithm that
incorporates this CFM is developed, based on a fast 3D hybrid-dual-Fourier tomographic approach
using multiple detectors and multiple sources in parallel geometries. The inverse algorithm can
produce a 3D image of a turbid medium with more than 20,000 voxels in 1-2 minutes using a
personal computer. A 3D image reconstructed from simulated data is presented.

Subject terms: photon migration; radiative transfer equation; forward model;
absorption and scattering; optical tomography; inverse algorithm.
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1. Introduction

Over the past decade, optical tomography has been investigated as a noninvasive imaging method that uses
non-ionizing near-infrared (NIR) light to obtain images of the interior of the breast. Unlike X-ray, which is
attenuated through media by ionizing the electrons at inner-orbits of atoms, NIR light uses the vibrational overtones
for different molecular components in the structures of tumor. NIR light may be used to create image based on the
molecular change, which may be used to improve sensitivity and specificity in the early diagnostics of breast cancer.
Breast tissues scatter light strongly, and blur the direct shadow image of a tumor. A technique, known as inverse
image reconstruction, has been investigated to overcome the problem of multiple scattering. Some obstacles in the
development of optical tomography are inaccuracy of the commonly used diffusion forward model, and lack of a
fast inverse algorithm able to realize a three dimensional (3D) image reconstruction of a breast for clinical use.

One critical issue is the forward model, which should correctly simulate photon propagation in the medium.

The most commonly used forward models were built based on solution of the diffusion equation, which is the lowest
approximation of the radiative transfer equation (RTE).[1-5] The forward models based on the diffusion
approximation (DA) give a large error when the distance, d, between a voxel and a source is small. Furthermore, the
photon distribution still maintains a strong anisotropy in a deeper region away from a source, which will be shown
later in this paper. Unfortunately, contributions from near surface voxels to measured signals are often larger than
contributions from the voxels deep inside the medium. Inaccuracy of DA based forward model may lead to a failure
in image reconstruction, especially for small hidden objects deep inside the medium. The total weight matrix should
be inverted. The large elements in the matrix, which play a more important role in inversion, are evaluated
incorrectly in DA models. The shortcoming of DA is well recognized, but it is still broadly applied due to the
difficulty in directly solving the radiative transfer equation. Hielscher et al [6] and Vihunen et al [7] developed
numerical solutions of RTE for optical tomography.




Recently, we have developed an analytical solution of RTE, based on cumulant expansion, in an infinite
uniform medium with an arbitrary phase function. [8,9] It provides an explicit analytical expression for photon
distribution function I(r, s, £), as a function of position r, direction of light s, and time ¢. The mean position and the
half-width at balf maximum height (HWHM) of the distribution are always exact. In this paper, the linear forward
model based on the cumulant solution is described. This CFM may used with time-resolved, CW, and frequency-
domain data, which are much more accurate than the DA models.

To obtain a 3D image one needs to investigate the inverse algorithms. For clinical applications, this requires an
inversion technique, that is computationally fast, and stable in the presence of measurement noise. Recent
algorithms to solve the inverse problem include Newton’s least-square-based methods and gradient-descent
methods.[1-5] These approaches use an iterative procedure, which requires a long computation time to solve a 3D
inverse problem with large unknowns (the number of unknowns is the number of voxels). Furthermore, the iterative
methods can not ensure that the result arrives at a “global minimum”, and does not converge to a “local minimum?”,
which is not a true image of the medium. The application of Fourier transform, which has been called “diffraction
tomography”, can greatly reduce computation time. Matson et al [10] and Li et al [11] have developed the
diffraction optical tomographic methods to realize fast image reconstruction. However, their algorithms are limited
to the use of a single light source with a 2D plane of detectors. This type of experimental setup acquires only a set of
2D data using CW or frequency-modulated light, that is not enough for a 3D image reconstruction. Recently,
Schotland and Markel developed inverse inversion algorithms using diffusion tomography [12,13,14] based on the
analytical form of the Green’s function of frequency-domain diffusive waves, and point-like absorbers and
scatterers. Data obtained by multiple sources with multiple detectors in parallel slab geometry are used in these
approaches.

A fast hybrid-dual-Fourier (HDF) algorithm, which uses multiple sources and multiple detectors in parallel slab
geometry, is described in this paper for reconstruction of a 3D image of an inhomogeneous medium. This approach
uses a general 2D translation invariance of the Green’s function in a homogeneous background slab medium,
suitable for forward models based on solution of RTE, and various other forward models, in CW, frequency-domain,
and time-resolved measurements. This inverse algorithm runs fast. It is shown that a 3D image of a turbid medium
(for example, divided into 32x32x20=20480 voxels) can be reconstructed in 1-2 minutes using a personal computer.
This algorithm can produce stable images in presence of relatively strong noises.

The forward model and the inverse algorithm discussed below can also be applied for image reconstruction in a
cloudy environment for military use.

This paper is organized as follows: Section 2 presents the analytical solution of RTE, based on a cumulant
expansion, in an infinite uniform medium and shows the photon distribution function computed using the cumulant
analytical solution. Section 3 describes the forward models based on the analytical solution of RTE, considering the
slab geometry, and a weak heterogeneity using a perturbative method. Section 4 describes the hybrid-dual-Fourier
inverse algorithm for a reconstruction of a 3D image of an inhomogeneous medium. The 3D image using this
algorithm is shown. A discussion is presented in Section 5.

2. Analytical cumulant selution of RTE

The photon propagation in a medium is described by the photon distribution function, I(r, s, ¢), as a function of
time ¢, position r, and direction s. The mathematical equation governing photon propagation is the well-known
radiative transfer equation:

oI(x,s,8)/ 0t +cs-V I(x,8,8) + p,(v)I(r,8,2) = 1, (r )| P(s,s',x)[I(r,s',1) - I(x,s,1)]ds' )
+0(r-1y)o(s-sy)o( - 0)
where the fundamental parameters are the scattering rate py(r) = cpo,, the absorption rate p,(r) = cpo,, and the

differential angular scattering rate p(r)P(s, s, r), where 6, and o, are the absorption and scattering cross sections

respectively, p is density of scatterers, and c is the specd of light in the medium. In a uniform infinite medium, these
parameters are position independent.

When the phase function depends only on the scattering angle, we can expand the phase function in Legendre
polynomials with constant coefficients,

1
P(s,s'y =—2X,a,P[cos(s-s')] @)
47

Recently, we have developed a new approach to obtain an analytical solution of RTE, based on a cumulant
expansion, in an infinite uniform medium, with an arbitrary phase function P(s, s ). [8,9]




We briefly review the concept of “cumulant” in a 1D case. Consider a random variable x, with a probability
distribution function fx). Instead of using f{x) to describe the distribution, we define the nth moment of x,

<x">= jx" f(x)dx, and correspondingly the nth cumulant P>, defined by

e o0
exp(z< x" >, (it)" / nt) =< exp(itx) >=2< x" > ()" /n!. The first cumulant <x>, is the mean
n=1 n=0
position of x. The second cumulant <x*>, represents the HWHM of the distribution. The higher cumulants are related
to the detailed shape of the distribution. For example, <x*>.describes the skewness or asymmetry of the distribution,
and <x*>, describes the “kurtosis” of the distribution, that is the extent to which it differs from the standard bell
shape associated with the normal distribution function. The cumulants, hence, describe the distribution in an
intrinsic way by subtracting off the effects of all lower order moments. In 3D case, the first cumulant has 3
components, the second cumulant has 6 components, and so on.

We derived an explicit algebraic expression of spatial cumulants at any angle and any time that is exact up to an
arbitrarily high order 7. [9] This means the distribution function I(r, s, #) can be computed to any desired accuracy.
At the second order, n = 2, an analytic, hence, useful explicit expression for distribution function I(r, s, 1) is
obtained. [8] This distribution is Gaussian in position, which is accurate at later times, but only provides the exact
mean position and the exact HWHM at early times. A weakness of the second order cumulant solution is that
photons at the front edge of Gaussian distribution travel faster than light speed, thus violate causality, though to a
much less extent than that in the diffusion approximation.

Fig.1 compares I(r, s, ¢} obtained from the analytical cumulant solution and the Monte Calro simulation. In
order to reduce the statistical deviation to an acceptable level, 10° events are counted in the Monte Carlo simulation.
The figure shows that the solid curve (the 10th order cumulant solution) is located in the middle of data obtained by
the Monte Carlo simulation. The solution for CW case can be obtained by an integration of I(r, s, /) over time ¢. It is
shown that even second order cumulant solution (the dotted curve) can provide an accurate CW solution, because
this solution ensures that the mean position and the HWHM of distribution are always exact.

The plots in Fig. 1 indicates that a strong anisotropic angular distribution still exists at z ~ 6 ,, (I, is the
transport mean free path) from the source. The diffusion approximation is only valid when the angular distribution is
nearly isotropic. The dominate s wave distribution N(r, £)/4n computed using the diffusion model (the thick dotted
curve) has a large discrepancy with the Monte Carlo result.

The second order analytical cumulant solution is given by [8]

_F(s,8,,0) 1 | _.C _,€ 3
I(x,s,t)= (4”)3/2 (detB)l/z expl: 4(B )aﬂ(r r )g(r—r ),3] > 3)
where
2/ +1
F(s,8,8) = exp(—p,1)Y, ar exp(—g,t)P,[cos(s-so)]

2[+1 @

i SPCEDT, (9, 50)

In Eq. (4), & = W[l = a/QH1)], Y 0,0)=(=1)"[(I=m)/((/+m)!]"* P{™(cosB)exp(imp), where P{™(cosb) is the
associated Legendre function, and ¥, (s) are spherical harmonics normalized to 4n/ (2/+1).

In Eq. (3), the mean position of the distribution (first cumulant), when the source is located at ry = 0 and the
incident direction is along z, is given by:

= exp(—4, 0%,

r(s,0)=GX, AP (cos U+ f(g, ~g.)+f (g, —g )] . (5.1)
v (s,0) =Gy, A,P,(‘)(COSQ)COS¢[f(g, -g)-flg-g.)1 . (5.2)
where G = ¢ exp (—u0)/F(s, so, 1), A= (1/4n)exp(—git), and
f(g)=lexp(gn)-1}/g (6)

r,“ is obtained by replacing cos¢ in Eq. (5.2) by sind.
The HWHM (second cumulant) is expressed as




B s(8,0)=cGA 5 —115/2 , ©)

with
2 2
l(l 1)) (1) (+1D)(+2) ) ) 3) (+1 (4)
AP (cosé + E“ + EX + E , (8.1
=2 AR eosO) S 2+3 0 21t T o143 @D
N 2/-1 21+3 21-1 21+3
1 oo g L g1 po_ 1 L
+ L P (cos @) cos(2 + E" - EF — E , 8.2
Z’.2 (cos®) (¢)[21 15 204377 21-1" 2437 62
where (+) corresponds to A, and () corresponds to A,,,.
1 1 1
4P, (cosO)sin(2 EV+ EP ———EP———E® |, 83
Z’ (cos0) (¢)[2z st B Tt | 6
2(1-1 2(1+2 1 1
= Z,—A,P,“)(cos ) cos(¢)[ 2(l 1) E® — él N 3) EP+ 5 E® + 513 E,“)] (8.4)
A, is obtained by replacing cos¢ in Eq. (8.4) by sing. In Eqs. (8.1- 8.4) £{ are given by:
EN =(f(g,~g)- (g~ &g — &) , ©1n
EI(Z) =1/ (g~ &)~ F(& — 81V —812) , -2)
E1(3) =[/(g—g-)-11(g, —g) - , .3)
E =[f(g —g.)-111(g — &) - 04

Figs. 2(a) and 2(b) show the light distribution as a function of time at different receiving angles in an infinite
uniform medium, computed by the second cumulant solution, where detector is located, separately, at 5 /, (Fig. 2a)
and 15 /, (Fig. 2b) from the source in the incident direction of the source. Fig. 2 shows the existence of the strong
anisotropy of the light distribution at 5 J, from the source and the modest anisotropy at a distance of 15 /,, . These
types of distributions have been demonstrated by time-resolved experiments. [15]

One advantage of using the above analytical solution of RTE is that the distribution function can be computed
very fast. The associated Legendre functions can be accurately computed using recurrence relatlons It takes only a
minute to compute 10° data of I(r, s, /) on a personal computer.

The corresponding solution in the frequency-domain /(r, s, ®) can be obtained by making a Fourier transform
Idt exp(—iat)I(r,s,t) . The CW solution is obtained by taking = 0.

The photon density N(r, ) of the second cumulant solution is given by

‘ 2 2,2
N(r,t)= ! L exp{-(Z_R’) }expl:—(x ) )Jexp(—,uat) ; (10)

(4D, ct)l/ 2 4nD .t 4D, ct 4D, ct

with the mean position R, =c[i-exp(-g)l/ g, . an

The corresponding time-dependent diffusion coefficients are:

Dzz=—c-{—’—+3—g—g2—[1 exp(—g lz)]+———2—[l—exp(—gzz)]—iz[l—exp(—glr)lz} (12)
1

3t|e el(gi—g2) 2(&81-22) 2g;

-n _CcJt 8 ' 1 . (13)
D,=D,=—¢— +— [I—exp(—g)]+———[1—exp(~g.1)]
Y 3t{g1 g (g~ g,) i) 8:(&—&>) G }

As shown in Egs. (11) - (13), the mean position of the distribution is moving, and the diffusion coefficients are
time dependent. At 7 — 0, the mean position of the photon density moves along z direction with speed ¢, and the




diffusion coefficients tend to zero, this result presents a clear picture of near ballistic motion. As time increases, the
mean position motion slows down, and the diffusion coefficients increase from zero. This stage of photon migration

is often called a snakelike mode. At long time, Eq. (10) tends to the center-moved (1 /,) diffusion mode! with the
diffusion coefficient /,/3.

3. Forward model based on the cumulant solution of RTE

The linear forward models for scattering media are built in following three steps: (1) computation of a
background Green’s function in an infinite uniform medium; (2) extension of this Green’s function to slab
geometry; and (3) computation of the weight function using a perturbative method. These steps have been applied in
building the linear forward models under DA.[2] We use these steps as well, but our approach is based on the
cumulant solution of RTE, rather than the solution of the diffusion equation.

We use the second order cumulant solution for computing a background Green’s function in an infinite
uniform medium, since it is easy to use the explicit expressions in Eq. (3) — Eq. (9), that avoid complicated
computations of higher order cumulants. The second order cumulant solution is accurate at later times, but only
provides the correct mean position and the correct HWHM at early times. We notice that the width of the
distribution at early times could be smaller than the size of a voxel, the average over the distributions at different
points in a voxel smears the detail shape of the distribution. In the CW or frequency-domain cases, the shape of the
distribution is further smeared by integration over time ¢. Therefore the second order cumulant solution can be a
reasonable approximation in building forward models based on the RTE.

Since a detector usually collects emergent light within a wide range of angle of different directions, it is
convenient to compute the Green’s function related to a detector using photon density N(r,, 7) [Egs. (10)-(13)],
where r, is the position of detector.

It is essential to include the boundary effect in the solution of the RTE when photons are injected into and
spread out from a finite sized medium. A proper extension of the cumulant solution to slab geometry is an essential
step for building a forward model.

A boundary condition is applied based on the following physical consideration. At carly times, the center of
photon distribution injected into medium, moves forward into medium. Then the distribution spreads out from the
moving center with diffusion coefficients that gradually increase from zero. At early times, the number of photons
leaking out of the boundary is negligible compared to the total number of the incident photons. The boundary
condition plays a role at later times, when there are many photons leaking out of the boundary.

The approach known as an approximate "extrapolated” boundary condition [16], extrapolates the boundary by
a distance £ = a /,, the extrapolation length, beyond the real boundaries with o ~ 0.7, at which the photon density
vanishes.

To apply this boundary condition for the cumulant solution in a semi-infinite geometry, a. virtual negative
source, S,, is added to the original source, S, as shown in Fig. 3. During the early period, the solution of the RTE in
an infinite uniform medium automatically satisfied the boundary condition because the deasity is near zero at the
boundary, and the virtual source does not play a role. After a time of approximately 4 /,/c, the center of photon
density, C, has moved and stopped at a position 1 /, from the original source S and the center from virtual source,
C., has moved in a similar way. Then, the arrangement shown in Fig. 3, produces a cancellation of contributions to
the photon density from the original source and the virtual source on the extrapolated boundary.

Fig. 4 shows that the time-resolved backscattered photon distribution in a semi-infinite medium on the z = 0
surface, with the source-detector distance 1 /,, obtained using the second-order cumulant approximation and the
extrapolated boundary condition, which agrees with the Monte-Carlo simulation much better than that of the DA.

For extending to the slab geometry, adding a series of pairs of virtual "image” sources at both sides of slab is a
good approximation for satisfaction of the extrapolated boundary conditions on both sides of a slab. [17]

The heterogeneous structure of a highly scattering turbid medium can be characterized by the following
optical parameters: the scattering rate py(r), the absorption rate ,(r), and the differential angular scattering rate
w(nP(s, s, r).

A perturbation method is used which takes the photon distribution function in a uniform background slab
medium as the zero-order approximation. The change of the photon distribution function originates from the change
of optical parameters compared to that in the uniform background slab medium. The change of scattering and
absorption paramcters are defined as follows:

A“s(r) = Hs(r) - HS(O) >

AF) = py(r) = 1, (14)

AlPY(s. s, 1) = p(nPG, s, 1), — PP, s),




where the quantities with super index (0) are the optical parameters in a uniform background slab medium. By
expanding A[i.P](s, s, r) in Legendre polynomials, we obtain

1
AL, PY(s,8',) =— > [Ap, (0)a,” + 1, Aa, (1)]P[cos(s )] (15)
4

with Aag(r) = 0, since a, always equals to 1. The physical meaning is that the scattering parameters have no effect on
the s (/ = 0) component.

Making a perturbation expansion of Eq. (1) to the first-order Born approximation, the change in the photon
distribution is given by

AI(x,,s,5|x,,8,) = [dt [dr [dsT® (x,,8,.t—1]r,s")

{ .“A[ U PY(s,8 1) O(,s,1" | x5, )ds -[Ap, (v) + A, (0] O (x, s, 7| r,,s,)}

where A (rg,S41Fs.S;) is the change in the light intensity received by a detector located at r,, along the direction s,
and at time ¢, which is injected from a source located at r,, along a direction of s, at time ¢ = 0. "Change" refers to
the difference in intensity compared to that received by the same detector, from the same source, when light passes
through a uniform background slab medium. The term /© (r,,5,,4r1,s,) is the intensity of light, calculated using the
cumulant solution of RTE, at r; along the direction s, and at time ¢, when light is injected from a position r; along a
direction of s, at time ¢ = 0 migrating in a uniform background slab medium.

The background Green's functions in Eq. (16), obtained by cumulant solution, are expanded in spherical
harmonics:

19(x,s,0'|x,,8,) =Y. 4, (5,x,.8,,t)7,.(5),
I.m

, 16)

IO(t,,8,,t-111,8) =Y Cp (1,18 ,,t — ) (S) - an
Im

The spherical transform is performed using a fast Fourier transform for the integral over ¢, and a Clenshaw-Curtis
quadrature for the integral over 0.

Using the orthogonality relation of the spherical function and the addition theorem:
ZY[m (S)YIm* (8") = B[cos(s-s")], the analytical integration over s and s’ in Eq. (16) can be performed. For
m
time resolved data, the contribution from an absorbing object located at ry is given by

& 4rx .
(21+1)Z A, (x,,r.,s,,1)C; (r,,r,,s,,t—1)(18)
=0 m

where 8V, is the volume of k* voxel, and L is the cut-off value in the Legendre expansion in Eq. (18). The
contribution from a scattering object located at r, is given by

Al(r,,s,,r.,s ,t|r,)=

L © A |
v, [ary, (;ﬂl)[Aﬂx (r, )(l ——a’—)— py” M}Z A, (1,8, 0)C, (18,0 = 1)
+

Al(rd,s‘jarx >Sss‘t | rk) = _Aﬂa(rk)ng _[dt'

ar 2 +1 2+1 |5
(19)
For Frequency domain (or CW) data, the contribution from an absorbing object located at ry is given by
L 4rx .
Al(r,,s,.x,8,,@|r,)=-0u,(r, )V, Z 241 ZAlm (e, x,8,,0)c,, (r,,r,,8,,0), (20)
1=0 m

and the contribution from a scattering object located at r, is given by
Al(r,,s,.r,,s,,@|r,)=

L 4x a® Aa,(r,) R 1)
=V, ) A, ()| 1 -—— |- @ =42 DN 4, (x,rs.,w)c, (Y, xS, @).
k§2[+l ﬂs(k)( 2/+1 /‘l.s 2l+1 Z lm( k> Fs99y )lm( k> d> d )

m




Comparing Egs. (18)—(21) with the corresponding weight function commonly used in the diffusion
approximation, [1,2] only s wave (/=0) for absorptive objects, and only p wave (/=1) for scattering objects are
considered in the diffusion forward models. Besides, even for s wave and p wave, the diffusive solution is incorrect
when voxels are located near the source, as discussed before.

Above formulae allow simulating the background Green’s function and the change of optical parameters in
detail. They are also applicable to the cases where only a few parameters of the medium are known, similar to that
for the diffusion forward model. When only p®, 11, and g-factor for an uniform background medium are given,
the Henyey-Greenstein phase function [18] is widely adopted as an approximate phase function:

1 1-g? 1 ;

P(cosé) = =— > (21 +1)g'B(cosH). 22

( ) 4r (1+g* —2gcosf)*’? 47:2( )8 B ) @2)

Although Eq. (22) uses a single parameter, g-factor, to describe a phase function, this description is much better than
that used in the DA, which implies a phase function linear in cos6 .

If Ag; (r) in Eq. (21), which represent the change of the phase function, is not considered, two optical
parameters being imaged are Ap,(r) and Ap(r). The reduced scattering coefficient Ap(1-a,%/3) is directly related
to AD (change of the diffusion coefficient) used in the DA models. The CFM, hence, can be applied to the
experimental data in a similar fashion as that for the DA models, to obtain images of the optical parameters. In the
CFM, however, all contributions from higher spherical waves are properly included.

The most time consuming part in computation of CFM using the above formulae is to build a database of 4,,,
and C",, Once it is built for a uniform background medium, the database can be applied for imaging of various
heterogeneity cases. In parallel geometry, 4,, is a function of (xi~x;, y—y,) due to the 2D translation invariance.
Since position of source z, and incident direction s; are fixed, only a 3D (x,—x,, Yi—ys, z) database is required. When
s; is taken along z direction (light is injected perpendicular to surface), the scale of database is reduced to 2D due to
the z axis symmetry. Photons from different directions in a wide solid angle are received by a detector, as discussed
before, photon density Mry—r, s, £) is used for computing the Green’s function associated with detectors, which is
independent of s, , and C’,, can be computed much easily. The database can be built in a reasonable computation
time because the distribution function /© (r2,82,x1,8;) can be rapidly calculated using the analytical expressions.

4. Fast 3D hybrid dual Fourier (HDF) inverse algorithm

We now outline an inverse algorithm to quickly reconstruct image of a medium from acquired measurements

using the above CFM. The above model, neglecting the irrelevant parameters, can be briefly written as

Y(E,.%.2,,2,) = [ddeW(E -T.5 ~T,2,2,,2) X (F,2), 23)

where R = (f, z) is the position of a voxel inside turbid medium; T is (x, y) coordinates; ﬁs =(T,,z,)is the
position of a source; and R ¢ =(1;,2,) is the position of a detector. In Eq. (23),Y (1,,T,,z,,2,) is the measured
change m light intensity received by a detector at R 4 from a point source at ﬁs. X(T,z) is the change of the
optical parameters inside turbid medium. The weight function W (T, — f,i'; ~-T,z,z 4>Z) is a function of T, — T

and fs —T on (x, y) plane, because of parallel geometry, assuming an infinite sized area, and the 2D translation

invariance of the Green’s function in a background homogeneous slab. Here, the special form of the weight function
is not relevant; the weight function can be calculated by the CFM or the DA models, using with CW, frequency, or
time-resolved data. This approach is general and can also be used for inverse problems of non-optical measurements
in paralle! geometries.

A light source scans through a 2D array. Transmitted or backscattered light signals emerging from the
medium are detected using a 2D array of detectors, such as a CCD camera (or time-gated CCD camera in the time
resolved case). Each illumination of the light source provides a set of 2D data on the two-dimensional detector array.
For CW or frequency-modulated light source, this arrangement can produce a set of 2Dx2D =4D data in a relatively
short acquisition time, because a CCD camera produces 2D data of the detectors at different positions
simultaneously. When time-resolved or modulation at multiple frequencies are applied, a set of 5D data can be
acquired. The inverse problems of 3D imaging, hence, are over-determined, which is necessary for obtaining an
accurate 3D image.

When the transtation invariance is satisfied, the Fourier transform approach is a powerful technigue to achieve
a fast inversion. In the Fourier space, the convolution of # and X becomes a product of ¥ and X, and the weight

Iy
i




matrix ¥ becomes diagonal. Hence, inversion can be performed much faster. Using this concept in the case of
multiple sources and multiple detectors in parallel geometries a dual 2D Fourier transform J‘dfsdfdeﬁsr‘eﬁd?" is
performed on Eq (23) to obtain

iq
jd"cfess ddY(r r,z,zd)=

H

r -1 iq,(f, -1 i@ +4,)f
[dzf dE[d(E. - T)d(E, - e a5 _)e a0 =D (t -T,5, -T,z ,z.,2)e (s +dq) X@,z2)
S d S d s’ d
which leads to
Y(Eid’a.s’zd’zs) = IdZW(Eid’Els’Zazdazs)X@d +E{S,Z), 24

where Y, X, and W are change in light intensity, change in optical parameters, and the weight function in the
Fourier space respectively.

A similar form of this dual Fourier transform has been derived by Markel and Schotland [13,14] in a frequency-
domain diffusion model.

Eq. (24) seems difficult to be used for performmg the inverse reconstruction because of the argument
mismatch (q, +q, )mX and (q,, qd) in ¥ and W . This diffi iculty occurs because the weight function in Eq.

23) is related to three positions: I, T., and T . To remove this complexity, the following linear hybrid transform is
d s

introduced:
G-G +a
ST (25)
V= qd - qs
This results in HDF formuia:
Y(8,9.2,,2,) = [&W(5,¥,2.2,,2)X(@5,2) , 26)

where Y, X ,and W are, respectively, Y, X ,and W as functions of i and v .

While Eq. (25) is a relatively simple expression, it is essential to properly realize this hybrid transform in
discrete lattices of the Fourier space. A procedure to quickly perform this transform from (qq, q) coordinates to new
(u, v) coordinates, separately, for x and y components, is explained in Fig. 5 using an example of a 6x6 lattice. The
maximum value of u is taken as the maximum value of qq or g, not the maximum value of q4 + q.. The periodic

property of lattice in the Fourier space is used, for example, Y =2, v=4) = Y (q4=3, q=5). This procedure builds a
one-to-one correspondence between lattices in the two coordinate systems. Fig. 5 shows that Y and W at each

node [circle in Fig. 5] in (u, v) coordinates are directly mapped from Y and W , respectively, at the corresponding
node in (qq, gs) coordinates without any algebraic manipulation.

In Eq. (26), a common 2D Fourier argument U appears in Y , X , and W . For each value of U, Eq. (26)
leads to an over-determined 1D problem for inverse reconstruction: Y V)= Ide(V, Z))? (z). In order to

perform fast inversion, we invert the normal form of the forward model: YW= [VIN/TWN/ ] X for each U, where

[WTW] is a MxM matrix, with M the number of layers in z direction. The original W in Eq. (23) is a matrix with a

large dimension. The inverse problem now is simplified to invert many (number of discrete value of i) matrices,
each with a small dimension M. The latter problem is much more computationally efficient compared to the original

problem of Eq. (23). Once X (4,2) are obtained for all U, a 2D inverse Fourier transform produces X (T, z),
which is the 3D image of optical parameters of the medium. Markel and Schotland use different procedures for
inversion. In [13] a Fourier-Laplace inversion is applied, hence, an analytic continuation of measured data to the
complex plane is required for the inverse Laplace transform. In [14] an inverse procedure is performed in an

argument space, similar to variables V here. Since V include 2D variables, inversion in Vv space could take longer
time than that of inversion in z space.




As discussed before, matrices W and [WN/TW] for each U can be calculated in advance for a uniform

background slab medium. Assuming that a group of experimental data has been acquired, the following steps are
taken to produce a 3D image of the medium:

(1) Obtain “change” of intensities, Y (T;,T,,2,,2,), by subtracting the intensity for a uniform background
medium from the measured intensity;

(2) Extend the (x, y) area and padding zeros, to overcome the wraparound problem in discrete convolutions;
[191

(3) Perform a dual 2D fast Fourier transform (FFT) of Y(T,,T,,z,,z,) in the extended area to
produce}}(qd,qs,zd,zs);
(4) Determine f/:(ﬁ, V,Z,,z,) foreach 1, using a mapping procedure explained in Fig. 5;

(5) Invert YW= [WTVFN/ ] )? for each U , which is an inverse problem involving a MxM matrix, with M
the number of layers along z direction. Proper regularization according to noise level needs to be taken into
account. Regularization will be discussed later in the paper; and

(6) Finally, perform an inverse 2D FFT on X (4, ) to produce X (T, z) .

Our computational experiments show it takes only 1-2 minutes on a personal computer to perform an inverse
reconstruction of a 3D image of a medium with a large number of voxels (for example, 32x32x20 voxels) using this
HDF algorithm. ‘

To demonstrate our concept of HDF tomography in 3D image reconstruction, an example using simulated CW
data is presented. A slab turbid medium, with a transport mean free path /, = 1 mm, absorption length /, = 300 mm,
and thickness z, = 40 mm, is divided into 20 layers. A CW light source, injected perpendicular to the z; = 0 plane,
scans by a 2D 32X32 array on the plane, with each pixel 3mmx3mm. A 2D array of detectors with the same spacing
is located at z, plane (transmission geometry). The medium, is divided into 32x32x20 voxels, each of dimension
3x3x2 mm’. Two absorbing objects are located in the medium, each with a volume 3x3x2 mm’. The first one
located at (10, 10, 10) has an absorption difference of Ap, = 0.01 mm™" with the background. The second one is
located at (20, 20, 15) with an absorption difference of 0.007 mm™. The simulated data with noise level of 5% are
obtained using the CFM. The tomographic images are shown in Fig. 6. As shown, the central positions of 3D image
of the objects are correct, located at a voxel (10, 10, 10) with red color, and a voxel (20, 20, 15) with yellow color.
The resolution of image is about ~ 6 mm in the transverse (x, y) plane and ~ 10 mm along z direction. In general, the
axial resolution (along z direction) is poorer than the lateral resolution [on the (x, y) plane]. In transmission
geometry, two Green’s functions in the weight function compensate each other when the z position of the object
changes, that leads to a poor sensitivity of the measured photon intensity to the z position of the object. The shapes
of 3D image of two objects are ellipsoids with longer axis along z direction. The absorption difference has the
maximum value at the center of ellipsoid, and decays gradually with increase distance from the center.

A cut-off in discrete lattices of q, andq 4 Maturally introduces a kind of regularization. This regularization is

very effective. Initial tests show that even adding 30% of fluctuations on simulated data of Y(3,,T,z 42Z.),an

image similar to that shown in Fig. 6 is still reconstructed. The reason for this is that noises come from fluctuations
at different source and detector positions, which are mainly the high frequency components of d, andq, . A cut-off

in Eis andq q naturally eliminates thesc high frequency noises, such that a stable image, cspecially in (x, y) plane, can
be reconstructed in a strong noise level.

However, the inversc problem is still ill-posed, because contribution to the change of intensity from a small
voxel deeply inside medium is weak, and is not sensitive to its z position in transmission case. A regularization

procedure on inversion of YW= { WTw ] X is still needed. The standard Tikhonov regularization approach [20]
is applied and L-curve [21,22] method is used for determining the best regularization parameters.
This fast inverse algorithm produces a 3D image in a linear image regime. For nonlinear image reconstruction

procedure, the reconstructed 3D image provides a good initial profile for further refining the 3D image taking the
nonlinear effects into consideration.




The HDF inversion method can be extended to a cylindrical geometry, with an arbitrary shape of the (x, y)
cross section, for 3D image reconstruction. In this geometry, an algorithm using a single Fourier inversion has been
developed.[23] This algorithm is limited to the case that the sources and the detectors are located on a plane with
same z coordinates. The hybrid-dual-Fourier inverse approach in cylindrical geometry removes this restriction, so
more data can be acquired for 3D tomography. The linear forward model in cylindrical geometry is given by

Y(%,,%,2,,2,) = |dtdzW(,,1,,T;2, — 2,2z, —2)X(T,z) , @n
d2s2“d>“s d> s d K}

where W(I,,L,T;z, — 2,2, —z)is the weight function, a function of z; - z and z, — z due to the 1D translation
invariance of the Green’s function in a homogeneous background medium in cylindrical geometry (assuming
infinite z length). We make a dual 1D (along z direction) Fourier transform Idz ddzb_eiq"z" e on Eq. 27) to

obtain
Y(q,,9,,%5) = [ (qy,9,,5,%,E) K (q, +4,.), (28)

where ¥ , X , and W are the Fourier space quantities corresponding that in Eq. (27).
The (1D) linear hybrid coordinate transforms, u = g4+ q,, and v = g4 q,, for Eq. (28) leads to:

Y(u,v,fd,i;)= Ide(u, v,?d,fs;f))?(u,f) , 29

where Y , X ,and W are, respectively, ¥, X ,and W as functions of u and v . For each value of u, Eq. (29)
is an over determined 2D problem for inverse reconstruction, namely, to determine a 2D unknown value of

X (4,T) from known 3D data of ¥ (u,v,1;,1,) for each u. This 3D-2D determination enhances the accuracy of

3D image compared to 2D-2D determination in the single-Fourier transform inversion. After X (u,T) are obtained

for all u, a 1D inverse Fourier transform produces the image X (T, z) .
5. Discussion

As shown in Egs. (19) and (21), there is no contribution from s wave to the weight function for a scattering
object. This result reflects a fact that no scattering effect exists for an isotropic angular distribution. In the regions
far from sources, the weight function contributed from scattering objects is small because there is no contribution
from the dominant s wave, as shown in many results based on the diffusion models.[1-5] This non-sensitivity of
signals to the scattering objects deep inside the medium should be considered in optical tomography. A pure
isotropic distribution is never achieved, otherwise, there will be no flux in any directions. In the diffusive model, a

small p wave,— (3/47)Ds - VN , exists which maintains the photons diffusing to the regions with fewer photons.

The factor — VN represents this effect. However, this expression is valid only in the regions where the p wave is
much smaller than s wave, (1/4)N, and does not correctly describe the early photon propagation near sources. Since
only the weight function for scattering objects close to sources plays an important role, but it was estimated using
the formula valid in regions far from sources, substantial error introduced in the diffusion forward model for
scattering objects is crucial.

For the weight function of absorbing objects, contributions from all spherical components, including s wave, are
given in Egs. (18) and (20). In commonly used diffusion formula the contribution from p wave was neglected. The

diffusion  coefficient  originally —derived in the DA isD———l/(3/1; +u,), that leads to

AD = -D'"? (3Au, + Ap,) . The contribution from p wave to the weight function for absorbing objects, hence,

should exist. But in the later diffusion models AD is assigned only for scattering objects and only s wave for
absorbing objects is taken. Eqgs. (18) and (20) provide a quantitative estimation of weight function for absorbing
objects in regions close to the source, as well as far from the source..

The CFM and the HDF inverse algorithm need further improvements in the following aspects. Further
improvement should be considered without significantly increasing complexity in computation. First, the second
cumulant solution is not accurate in the detailed shape of the distribution, especially, the front edge in the Gaussian
distribution violates causality. An empirical distribution, which keeps the exact value of the first and second
cumulants, while satisfies the causality, can be designed to replace the Gaussian distribution.

Second, the boundary condition is approximate. When a more accurate distribution X(r, s, 7) at early time is
needed, the boundary condition for a semi-infinite geometry should be

\.




I(x,y,2=0;,0,9,t)=0, if cos@ > 0. (30)

This type of the boundary condition was studied by Domke [24] for the steady state case. The solution is represented
as a superposition of a solution describing a transport problem in an infinite medium, and a Fredholm integral term,
which corrects this solution for the appropriate half-space boundary condition. This approach may be used for
further development of the boundary problem.

Third, to consider the nonlinear effects, I’s in Eq. (16) should be replaced by the Green’s function in a real
heterogeneous medium. Among the high-order perturbative corrections of the Green’s function, the “self-energy”
diagram, which counts photon round trips through a position up to infinite times, plays an important role.
Gandjbakhche et al [25] studied this effect using a random walk model. We find that a renormalization procedure for
this nonlinear effect can be performed after image is obtained using a linear inversion process. This renormalization
procedure can recover the optimal value of the optical parameters and can improve the resolution of image. The
detailed results of the renormalization will be published elsewhere.

The translation invariance is valid for the parallel geometry assuming that the (x, y) area is infinite. We
suppose that this assumption of the infinite area is reasonable. How much error arises due to the finite area of a
sample will be studied in details.

Use of the simulated data mainly tests the validity of the inverse algorithm, does not test accuracy of the
forward model. Experimental data from phantoms and in vivo measurements in human body will be performed for
further testing of our approach.

In summary, we have developed a linear forward model of light propagation in a turbid medium based on an
analytical cumulant solution of the radiative transfer equation for 3D optical tomography. The model can be used for
CW, frequency-domain, and time-resolved measurements in parallel geometries. This forward model is more
accurate than the forward model based on the diffusion approximation of RTE. An inverse algorithm is developed,
based on a fast 3D hybrid-dual-Fourier tomographic approach using multiple detectors and multiple sources in

parallel geometries. This inverse algorithm is computationally efficient and is suitable for clinical applications, such
as beast cancer detection.
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Figure Captions

Fig. 1 Distribution function X(r, s, ¢) in an infinite uniform scattering medium as a function of time #, using Henyey-
Greenstein phase function with g = 0.9. The detector is located at R = 6], = 60 /, from the source front along
direction of incident light, and the direction is along the incident direction. The solid curve is computed from
approximation up to 10th order of cumulant; the dotted curve is computed from approximation up to the second
order of cumulant, the discrete red dots are from the Monte Carlo simulation; the curve of thick dots is from the
diffusion approximation (DA), N(r, /4.

Fig. 2 The light distribution in an infinite uniform medium as a function of time at different received angle, using
second cumulant solution of radiative transfer equation, where detector is located, separately, at 10 mm (Fig. 2a) and
30 mm (Fig. 2b) from the source in the incident direction. The parameters for this calculation are: I, =2 mm, [, =
300 mm, the phase function is computed using Mie theory for polystyrene spheres with diameter d = 1.11 um in
water and the wavelength of laser source A = 625 nm, which gives the g-factor g = 0.926.

Fig. 3 A schematic diagram shows how to extend the cumulant solution of RTE from an infinite medium to 2 semi-
infinite medium.

Fig. 4 Backscattered photon distribution /(r, s = —2, #) emerging from plane surface of a semi-infinite turbid
medium, as a function of time, with the source-detector distance 1 /, on the surface z =0 plane. The pulse source is
located at z = 0, incident along z direction. The extrapolated boundary condition is used. The solid curve is obtained
from cumulant approximation (CA), up to the second cumulant. The dashed curve is from diffusion approximation
(DA). The cross points are obtained from Monte Carlo simulation (MC).

Fig.5  An example of a 6x6 lattice for explaining the linear hybrid transform from (qy, q;) coordinates to (u, v)
coordinates.

Fig. 6. A 3D image reconstructed using hybrid dual Fourier tomography. Two absorbing objects, each with the
volume 3x3x2 mm’, are located inside a turbid medium with volume 96x96x40 mm’ divided into 32x32x20 voxels.
The first one is located at position labeled (10, 10, 10) with absorption differcnce Ap,= 0.01 mm™. The second one
is located at position labeled (20, 20, 15) with absorption difference Ap,~= 0.007 mm™. A CW light source incident
perpendicular to the z, = 0 plane is scanned through a 2D 32X32 array at the plane, with cach pixel 3mmx3mm. A
same sized 2D array of detectors is located at z, plane (transmission geometry). The simulated data are produced
with noise 5%. A linear scale of color bar from the maximum value to minimum value of Ay, is used. The numbers
labels the z layers counting form source to the detector, layers are separated by 2 mm.
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Anomalous diffraction of light with geometrical path statistics
of rays and a Gaussian ray approximation
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The anomalous-diffraction theory (ADT) of extinction of light by soft particles is shown to be determined by
a statistical distribution of the geometrical paths of individual rays inside the particles. Light extinction

depends on the mean and the mean-squared geometrical paths of the rays.

Analytical formulas for optical

efficiencies from a Gaussian distribution of the geometrical paths of rays are derived. This Gaussian ray ap-
proximation reduces to the exact ADT in the intermediate case of light scattering for an arbitrary soft particle
and describes well the extinction of light from a system of randomly oriented and (or) polydisperse particles.
The implications for probing of the sizes and shapes of particles by light extinction are discussed. © 2003

Optical Society of America
OCIS codes:

Anomalous-diffraction theory (ADT) which was in-
troduced by van de Hulst! for light extinction and
scattering, is one of the simplest and most powerful
approximations of the interaction of electromag-
netic radiation with spherical and nonspherical soft
particles. This approach has been used in remote
sensing of cirrus clouds and climate research, in
biophysical and biomedical research, and in other
applications.? The anomalous-diffraction theory is
based on the premise that the extinction of light by
a particle is primarily a result of the interference
between the rays that pass through the particle
with those that do not.> This approximation is most
applicable to so-called soft particles with the complex
relative refractive index m near 1 (|lm — 1] << 1) and
with a characteristic dimension of size r exceeding
wavelength A of the incident radiation (27r/A > 1) to
achieve a high degree of accuracy.®® This accuracy
has been observed to improve with softness and non-
sphericity,® and with polydispersity of the particle.3

In this Letter we show that ADT has a statistical in-
terpretation. The extinction of light by particles mea-
sures a probability distribution of the geometrical path
of the individual rays inside the particles rather than
the sizes and shapes of individual particles.

In the framework of ADT,! the extinction, ab-
sorption, and scattering efficiencies of a particle are
given by

2
Qext =

P
X exp(—kim;)}dP,

w [ /Pu ~ exp[—ikl(m, — 1)]

Quns = = 11 {1 - exp(—2hIm)aP,
P p

Qsca = Qext - Qabs > 1

where i represents the real part, the wave number is
k = 27 /A for wavelength A, the complex relative re-
fractive index is m = m, — im;, [ is the geometrical

0146-9592/03/030179-03$15.00/0

290.2200, 290.5850, 290.4020, 280.1310.

path of an individual ray inside the particle, and P is
the projected area of the particle in the plane perpen-
dicular to the incident light over which the integration
is performed. The optical efficiencies for a system of
randomly oriented and (or) polydisperse particles are
averaged over all the sizes and orientations of particles
weighted by their projection areas, i.e.,

— 3P
MY @

The integration in Eq. (1) over the projected area
for a single particle at a fixed orientation or the av-
eraging in Eq. (2) over the combined projected area
from all sizes and orientations of particles can be rein-
terpreted as an averaging over a distribution of the
geometrical path [ of rays. By dividing the (combined)
projection area into equal-area elements and counting
the resultant geometrical paths that correspond to each
projection area element according to their lengths, one
can find a probability function p(l)d! that describes
the probability that geometrical path ! from a ray is
within (/,/ + d). The probability function is normal-
ized to [ p({)dl = 1. By this interpretation, we can
rewrite the optical efficiencies in Eq. (1) as expected
values in accordance with probability distribution p(l)
of the geometrical paths of rays. The extinction and
absorption efficiencies in Eq. (1) can be expressed as

Qext = 2R [{1 — exp[—ikl(m, — 1)]
X exp(—klm;)}p(D)dl,
Qu = | [1 - exp(~2kim)lp0dl. @)

Assume that the geometrical path distribution of rays
(in short, the ray distribution) for one particle with a
unit size is py(/); then the ray distribution for a par-
ticle with the same shape, orientation, and a different
size L is given by p(l} = (1/L)po(l/L) from scaling of

© 2003 Optical Society of America
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length. Thus, a system of such particles whose size is
distributed according to a probability-density function
n(x) has a ray distribution function

[ (1/x)pot/n(e)x2 dz
Ppol(l) = 4 (4)
[ n(x)x2 dx

weighted by the projection area of individual particles
that is proportional to x2. The subscript pol or rn is
used to denote a polydispersed particle or one that is
randomly oriented, respectively.

Let us consider a unit spheroid with a semisize b =1
of the revolutional axis and an axial ratio € and with
an angle y between the propagation direction of the
incident beam and the revolutional axis of the spher-
oid. The geometrical length of a ray and the projection
area for such a spheroid have been calculated.® The
geometrical path distribution of the rays can then be
found:

poll) = —;‘(6—2 sin®y + cos? y)IH(l)

r 2 g1
< H (e~2sin? y + cos? y)1/2 e ®

where H(x) is a Heaviside function. The ray distribu-
tion for a system of such spheroids at a fixed orienta-
tion y with a log-normal size distribution,”’

B 1 _ [ In%(r/a,)]
n(x) = mr 1 ———2-0T > (6)
is given by
-2 :2 2
Pral) = (€ % sin X4+ cos” y)I
xerfc{(l/«fﬁ o)In[(e~2 sin? y + cos? y)V21/2a,]} o

an? exp(202)

from Eq. (4), where erfc(x) is the complementary error
function. The ray distribution becomes

Ppol,rn (l) =

1
[ Ppot(l)me?(e7? sin? y + cos? x)2d cos y
g (8
1
[ me2(e 2 sin2 y + cos? y)/2d cos y
0

for such particles randomly oriented where the
projection area of the cylinder is proportional to
me?(e 2 sin® y + cos? y)V/25 It is worth noting here
that the ray distribution for a simple spheroid at a
fixed orientation [Eq. (5)] is triangular, regardless of
the axial ratio of the spheroid. This fundamental geo-
metrical characteristics facilitates a simple rescaling
of the radius to calculate the optical efficiencies from
a sphere for a spheroid.®

The ray distributions from a single spheroid, a single
randomly oriented spheroid, a system of polydisperse
spheroids at a fixed orientation, and a system of
randomly oriented polydisperse spheroids are plotted
in Fig. 1. Tt is clear from the figure that the shape
characteristics of an individual particle are washed
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out by the averaging over the polydispersity and the
orientation of the particle. The shape characteristics
of an individual particle are expected to be further
washed out if particles of different shapes are involved.
Thus the ray distribution p(l) of a system of particles
such as a bacterial suspension, biological cells, or cir-
rus clouds where particles are polydisperse, randomly
oriented, and (or) of multiple shapes approaches
a probability-density function p(l) that is charac-
terized essentially by the mean geometrical path
(I) = [ lp(1)dl and the mean-squared geometrical path
(12) = [ 2p(l)dl of rays inside the particles. One
natural choice of p(l) here is the Gaussian probability-
distribution function, which follows the same spirit
as the well-known central-limit theorem.®? We should
point out that this choice does not satisfy p(I < 0) =0,
but the contribution from near the I = 0 region in the
ray distribution is much smaller than that from other
regions and hence can be ignored.

Let us now assume that the ray distribution is given
by a Gaussian distribution:

[ -]
Vom o exp 202

The extinction and scattering efficiencies are then
given by

plx) = 9

Qext =2 -2 coslk(m, — 1) (u — ka'zmi)]
[ K2o?(m, — 1 — m?])
2

X exp'—kum; —

Qavs = 1 — exp[—2km;(u — km;02)] (10)

from Eqgs. (3) after a straightforward integration.
The optical efficiencies [Egs. (10)], in the intermediate
case limit [k(m, — 1)l << 1 and km;l << 1, where [ is
the geometrical pathl,® reduce to

Qext = 2kmi(l) + E*[(m, — 1)® — m;Z)(1%),
Qabs = 2km(l) — 2k%m;%(1%),
Qsca = kzlm - 1'2<l2>: (11)

where the mean and the mean-squared geometri-
cal paths are given by (I) = x and (2} = u2 + o2,

0.6 T 2
X —— FX ——
i AN ---- AN —---
05 i POLFX - --- POLFX - -
A POL AN -ere AN e
] .
£ 04 e =2 2
5 i 4 E g
8 A ! 8
gosf f 0 z
5 r % o 2 4|3 2 4
g H %, P 3 M
s 0z} / % g
’6 4 b3
o1t/
II AP
0 LI
6 1 2 3 4 5 6 7 8 3

Ray Path Ray Path

(@) (b)
Fig. 1. Ray distributions for a spheroid at a fixed orien-
tation y = 0 (FX), randomly oriented (RN), polydisperse
at a fixed orientation (POL FX), and randomly oriented
polydisperse (POL RN). The axial ratio of the spheroid is
(a) € = 2 and (b) ¢ = 0.5. Log-normal size distribution
n{x} with a,, = 1 and o = 0.2 is also plotted as insets.
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Fig. 2. Extinction and absorption efficiencies of (a) a
sphere and (b) a polydisperse sphere with a log-normal
radius distribution of a,, = 1 and ¢ = 0.2 calculated with
Mie, ADT, and Gaussian ray approximations. Complex
refractive index, m = 1.05 — {0.0005. The size distribu-
tion has already been shown as insets in Fig. 1.

respectively. These results agree exactly with those
for the intermediate region over which the Rayleigh —
Gans approximation and the anomalous-diffraction
approximation of light scattering from small particles
overlap.’® This means that Eqs. (10) from our Gauss-
ian ray approximation reduce to the exact ADT in the
intermediate case.

Figure 2 compares the extinction and absorption ef-
ficiencies calculated by the exact Mie theory, the exact
ADT [Egs. (1) and (3)], and our Gaussian ray approxi-
mation {Egs. (10)] for a weakly absorbing sphere and
a system of the same spheres with a log-normal radius
distribution [Eq. (6)] of a,, = 1 and o = 0.2. Both
our Gaussian ray approximation and the ADT, unlike
the exact Mie calculation, tend to underestimate the
optical efficiencies. This fact is well known. %! The
absorption efficiency from our Gaussian ray approxi-
mation agrees extremely well with the ADT; at most
it differs by 2% from the exact Mie calculation in this
comparison. The extinction efficiency agrees well
with the exact Mie calculation in the intermediate re-
gion for both single spheres and polydisperse spheres,
as expected. The Gaussian ray approximation for
the polydisperse spheres approaches the exact ADT
calculation with maximum relative errors of 3.5%
compared to the ADT and of 7% compared to Mie
theory.

From our statistical analysis of the anomalous-
diffraction theory of light extinction, light extinction
depends solely on the probability distribution of the
geometrical paths of individual rays inside the
particles rather than on the size or the shape of an in-
dividual particle. Thus the optical efficiency equiva-
lence' can easily be achieved from different-shaped
particles or particles of different size distributions
as long as they share a common geometrical path
distribution of rays.

The geometrical path distribution of rays can be
approximated by a Gaussian probability distribution
function for a system of particles in which the par-
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ticles are randomly oriented, polydisperse, and (or)
multiple shaped. For such a system of particles the
light-extinction measurements essentially determine
the mean and the mean-squared geometrical paths
of rays from all particles in the system. The shape
and size of an individual particle can be deduced
only with @ priori information on the shape and (or)
the size distribution of the particles involved. The
pursuit of the mean and the mean-squared paths
from fitting Egs. (10) to experimental data, or the
general geometrical path distribution of rays p(l) of
particles from solving the inverse problem in Eqgs. (3),
provides an alternative approach to particle sizing
and shaping. We note that we have restricted this
study to extinction of light from particles of the
same type (a common refractive index, m). This
statistical interpretation of ADT opens a new way
to calculate optical efficiencies of soft particles of
different shapes by use of the probability distribution
of the geometrical paths of individual rays inside
particles.
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support is given by the U.S. Department of Defense
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Three dimensional hybrid-dual-Fourier tomography in
turbid media using multiple sources and inultiple
detectors
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We have developed a hybrid-dual-Fourier tomographic algorithm for a fast 3D image recon-
struction in turbid media using multiple sources and multiple detectors. This algorithm can be
applied to different forward models based on a diffusion a.p-proximation1 or a cumulant analytical
solution of the radiative transfer equation®3 in CW, frequency-, and time-domains as long as the
translational invariance in the lateral direc;tion exists. It provides a general scheme of fast numerical
three-dimensional image reconstruction using multiple soufces and detectors and is different from
previous diffraction tomography approaches.!'4

By scanning a point source on the grids of the input plane of a slab, the measured light intensity
I{pg, ps) on a.detector array on the exit plane of the slab may form a 4D data set where pg and p
are the coordinates on the input and exit plane. An additional dimension of the data set may be
added in frequency-modulated or time-resolved measurements.®” Based on the general properties.
of the translational invariance along the lateral direction, a dual two dimensional Fourier transform

on both lateral coordinates of the detector py and the source p, is applied to the intensity data set.

1




A hybrid transform is then performed on the spatial frequencies to rotate the coordinate system in

the Fourier space. This data rearrangement results in an inversion problem in the form of:
AI(u,v,zg,25) = /de(u, v,2,24,2) X (, z) (1)

in which A7 is the change of intensity in the rotated Fourier space (u,v), W is the weight function
and X is the Fourier quantity of the absorption and/or scattering deviation from the uniform
background. The integral: is performed on the axial coordinate z of the inhomogeneity, and z; and
zs are the axial coordinates of the detecﬁor and the source.

The recqnstruction is then performed for each fixed valug of the spatial frequency u in Eq. (1).
A series of such a one dimensional inversion over the axial coordinate z is carried out to obtain
the Fourier quantity X (u, z) for each u. The inverse Fourier transform of X (u, z) provides a three
dimensional reconstruction of the inhomogeneities in the turbid medium.

The major advantage of this approach is its speed and tolerance to noise. The reduction of the
image reconstruction to a series of one dimensional inverse problem of the dimension of the number
of discrete divisions .in the axial direction from our data rearrangement very much reduces the
complexity of the image reconstruction pfoblem. The number of operations required increases only
linearly with the total number of detector-source pairs. A cbmplete reconstruction of a 32 x 32 x 20
volume is within few minutes using a 1GHz CPU. The tolerance to noise, in particular, the additive
noise is achieved due to the different spatial frequency spectrum of thé signal and the noise. It is
straightforward in the Fourier space th) filter out noise which usually appears in higher frequency
components.

| We will };resent the reconstruction results fof a CW and a time-resolved reconstruction of a slab
with a thickness of 40mm and a similar optical property of a hu'ma.n breast. W'g will also discuss in-
detail the reconstruction algorithm. especially, the choice of the regularization parameters for Eq. (1)

from a statistical aﬁalysis of the reconstruction procedure. The merit of applying this algorithm to

2




CW, time- and frequency-domains for imaging will also be discussed.

This work is supported by US Army Medical Command. One of the author (M. Xu) thanks

the support of the Department of the Army (Grant# DAMD17-02-0516).
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Nonlinear multiple passage effects on optical imaging of
an absorption inhomogeneity in turbid media
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ABSTRACT

We report on the effect of the nonlinear multiple passage on optical imaging of an absorption inhomo-
geneity of finite size deep inside a turbid medium based on a cumulant solution to radiative transfer.
An analytical expression for the nonlinear correction factor is derived. Comparison to Monte Carlo
simulations reveals an excellent agreement. The implication on optical imaging is discussed.

Keywords: nonlinear correction, multiple passage, radiative transfer, optical imaging

1. INTRODUCTION

The principle of optical imaging of turbid media (such as tissues) is to locate and reconstruct the optical
properties (absorption and scattering coefficients) of embedded inhomogeneities (such as tumor) in the
hope of identification by inverting the difference in time-resolved or frequency-modulated photon trans-
mittance due to the presence of the inhomogeneities through either iterative or noniterative methods.
The key quantity involved is the weight function which quantifies the influence on the detected signal
due to the change of the optical parameters of the medium. The diffusion approximation to radiative
transfer provides an adequate model for the weight function (or Jacobian) for a small and weak ab-
sorption inhomogeneity far away from both the source and the detector. However, the weight function
predicted by the linear perturbation approaches is no longer valid when the absorption strength is not
small.! This can be attributed to the multiple passage of a photon through one single abnormal site.

The change of the light intensity AT at the detector ry due to the presence of an absorption site at
r from a modulated point source at r; is expressed as ‘

AT = —6p,V G(ra,wlr)C(r, wlrs) 1)

to the first order of Born approximation where du, is the excess absorption of the absorption site whose
volume is V, w is the modulation frequency of light, and G is the propagator of photon migration in
the background medium. Here, the Green’s function G(r,wlr;), in general, depends on the detail of
light scattering inside the medium, and the incident and outgoing directions of light.

When the absorption strength is not small (Su,V & 1), photon loss due to multiple passage of the
absorption site is appreciable and can not be ignored. The expression for Al in Eq. (1) needs to be
modified to include the contributions from multiple visits of the site by the photon. Fig. (1) illustrates
the most important corvection (a “self-energy” correction) which takes into account the repeated visits
made by a photon to the site up to an infinite times.

Further author information: (Send correspondence to M. Xu)
M. Xu: Email: minxusci.ceny.cuny.edu
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Figure 1. Self-energy correction to the multiple passage effect on light absorption.

Assuming that the center of the absorption site is located at ¥ and far away from both the source
and the detector, the change of the detected light, A, is now given by

AI = -G(rg,wlF)Véua(F) Y [~ Neas(w; R)V 6, (F)]™ G(F,w|rs) 2)
n=0
= —G(rg,w|F) Vopa(F) G(T,wjrs) |

1+ Neais(w; R)Véu,(F)

where

_ 1 '
-‘I\Tself(w': R) = W‘/‘/[/G(FQ,wlrl)d3r2d3r1 (3)

is the self-propagator which describes the probability that a photon revisits the volume V of size R.
Here G(rg,w|F) and G(F,w|r;) are well modelled by the center-moved diffusion model as long as the
separations |rg — |, |rs — F| > I; where ; is the transport mean free path of light in the medium.?2
However, the diffusion Green’s function can not be used in Eg. (3) to evaluate Nyey(w; R) where 1y is
in the proximity of rp. By comparing Eq. (2) to Eq. (1), the nonlinear multiple passgage effect of an
absorption site can be summarized by the nonlinear correction factor 1+ Ngis(w; R)Véuq(F)] -1._ This
factor serves as a universal measure of the nonlinear multiple passage effect as long as the absorption
site is far away from both the source and the detector and its size is much smaller than its distance to
both the source and the detector.

In this article, we will derive an analytical expression for the self-propagator to understand the
nonlineaxr multiple passage effect on light absorption using our cumulant solution to radiative transfer.
The nonlinear correction factor [1 + Ny (w; R)V(S,ua(f')]—1 of our result is shown to be in an excellent
agreement with the Monte Carlo simulations for continuous wave light.

2. THEORY

To take into account the higher order contributions from the absorption inhomogeneity, the behavior
of the photon migration in a short distance must be considered. Although the photon distribution is
almost isotropic at an absorption site deep inside the medium, the diffusion approximation is still not
appropriate here. The separation between the two points r; and rp within the volume in Eq. (3) is
small. The photon propagator V(rs.t|r;,s), which represents the probability that a photon propagates




from position r; with propagation direction s to position ry in time ¢, when ry is in the proximity of
ry, is governed by the radiative transfer equation rather than the diffusion equation.

Recently we have shown that the propagation of photon inside a turbid medium (the radiative
transfer equation) can be solved analytically using a cumulant expansion of the photon distribution
function.® The propagation of photon was found to transform from an initial ballistic motion at early
time and then gradually to a center-adjusted diffusion at later time. The propagator of photon density
(the Green’s function) in an infinite uniform medium is given by*

—rn — 2
N(r,tlro,so)=mexp it rZD(:;)tA(t)) -l/«atJ (4)

ignoring the small difference in the diffusion coefficient along different directions where the absorption
coefficient is y,, the time-dependent diffusion coefficient is ‘

2
DO = £ 12— 1 exp-et/t] - 2 11 - explctyi) ®)

and
A(t) = L[1 — exp(—ct/l;)) ' (6)

is the average center of photons which moves with speed c initially and approaches the transport mean
free path [; in the long time limit. The Green’s function for parallel geometries can be obtained by the
method of image sources.?

2.1. Propagator of an isotropic point source

Let’s now consider the propagator N(r, tro,so) at the inhomogeneity site ro = 0 (the origin of space)
deep inside the medium. The photon distribution at rq is almost isotropic but is anisotropic scattering.
The effective propagator can then be obtained by averaging (4) over the propagation direction so of
light over the 4 solid angle, and is given by [see Appendix A]
exp(—,uat) (7)
(4m)32(D(t)t)Y2r A(t) ,

(r—AQ@)? (r+AR))? |
o] ez

1
Nea(rt) = o= [ PsoN(r,tiro,s0) =

This reduces to

o _exp(—pqt) B ot
Neg(r.t) = - o(r—ct), fort—0 . (8)
and , ' \
exp(—pat) (r - 1) (r+1)
N, = —_ Y N v .
(Nt = T2 (b, /o, {e"p { Dt || e | Pt 0

in early and late time limits where Dy = lie/3.

The temporal Fourier transformns of the asymptotic equations (8) and (9) are given by

]

."Veff (I‘, w) =

exp (i~ ) (10)

4mr2c
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and
1
Negt(r,w) = SnDrl [exp(~5 |r — Li]) — exp(—=&(r + 1;))] (11)
respectively, where k = /3(u, — iw)/l;c whose sign is chosen with a nonnegative real part. In the limit
of small £ < 1, Eq. (11) simplifies to

1
3 = 47!'D°°lg r < lt
Lim Neg (r,w) { e T2l (12).

This is the case, for example, that a continuous wave propagates in a nonabsorbing medium. The
errornous divergence at the zero separation in the diffuse Green’s function

exp(—kr
G(r,w) = —__—ilcfrg) r)

is removed in our formulation of the propagation of an isotropic point source.

(13)

The asymptotic equation (11) from the late time limit provides a good approximation for Neg(r, w)
when 7 > ; [see Fig. (2)]. The contribution to Neg(r,w) when r < I; is from either ballistic or diffusive
photons, hence an improvement to Eq. (10) can be made

exp(—~ls)
4 Doorrls

Neg(r,w) ~ exp r(iw - ,ua)? + sinh(kr), r<l | (14)

4rre
to include the contribution from diffusive photons. The effective propagator in temporal Fourier space
Neg(r,w = 0) and its asymptotic behaviors (10), (11) and (14) are shown in Fig. (2). The diffusion
Green’s function has a huge error for small r. :

2.2. Self propagator for a finite volume

For an absorption site of a finite volume V' deep inside the medium, say a sphere of radius R < L
where L is the dimension of the medium, the self-propagator Nges(t; R) for this volume which denotes
a photon revisits the site in time ¢ is written as: ‘

_ : 1 '
Neatt(t; R) = ) /v /VNeﬁ(lr2 — 11|, 8)d®r1d%r,
1 2R
= 7 Neg (r, t)y0(r)4nrdr (15)
7 Jo
where
3r 1 /r\8 .
= 1-— 4 1_
20(r) iR R (16)
is the characteristic function for a uniform sphere.5® This characteristic function has a form of
Yol(r) =1=(S/4V)r + ... (17)

for an arbitrary particle where S is the surface area of the particle. This self propagator (15) for a

finite volume is quite different from the self-propagator of a point, obtained by setting r = 0'in (4) or
(7), ie.,

- . exp(—pqt) A(t)z } ) ) )
Neg(0.t) = D)t exp [_4D(t)t} » (t>0). (18)
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Figure 2. The effective propagator in temporal Fourier space Neg(r,w = 0) for photon migration in a nonab-
sorbing medium. Its approximations by (14) when r < I; and by Eq. (11) when r > /, are also plotted. The
diffusion Green’s function has a huge error for small r.

See Fig. (3). This difference comes from the fact that Eq. (15) includes the contribution from the
ballistic motion of the photon when the photon flies across the site while Eq. (18) does not contain this
effect. The former manifests itself in Fig. (3a) as the linear decay of Neegi(t; R)V in the form of yo(ct)
near the origin.

The self-propagator in temporal Fourier space is thus obtained by a temporal Fourier transform of
(15):

— +oo .
Neat@iR) = | " Neac(t; B) explit)ds (19)

2R

1 g [T .
= 7 A dryo(r)dnr [0 dtNeg (7, t) exp(iwt)

1 [2R 2
= -‘7/0 Negr (7, w)vo(r)dnredr.

The lower limit of integration is 0%, emphasizing that # = 0 should be excluded from integration. Note
lim, g+ Neg(r,t) = 0 for our cumulant photon density function. This is not the case for the diffusion
Green’s function. A numerical quadrature is generally required to compute this self propagator (19).
A crude estimation of Nyy(w;R) can be obtained from the asymptotic behavior (11) and (14) of
Neg(r,w), ie., :

e

Nrseﬁ (‘3‘) i R)

1 min(2RlL) 1 .. 7] 2 |
V/(; 1. P (iw —ua)z Yo(r)dmr<dr ('20)
Y N (=klr — L)) — exp(=&(r + 1))] vo(r)4rrd

V) srDor Xp t EXPL—RAT + L)) Yolr)drr dr.
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Figure 3. The sclf-propagators for a finite volune and a point: (a) Nseit(t; R) and (b) Ne::(0,1).

This reduces to

3
_ 1 8. R<1/2
Noat(w = 0; R) = v 38435+1eoz$R3-%oz§R2+31§ (21)
3208300 R>1/2

for a continuous wave propagating inside a nonabsorbing medium (w = p, = k = 0). This estimation

turns out to be amazingly good. Fig. (4) plots Negs(w = 0; R) from numerical quadrature and the
crude estimation (21).

3. RESULTS AND DISCUSSION

The multiple passage effect due to the absorption site can now be computed using the self-propagator
Eq. (19) derived here. For large sites, the self-propagator Nei¢(w = 0; R) increases inverse proportional
to its size (Ngoif x R™!) from Eq. (21); hence the nonlinear correction factor has a form of

-1

- ~ 22
T Noae(: B)V7,(%) Bl (22)

dependent on the area of the absorption site for large R.

Monte Carlo methods have been extensively used in simulation of photon migration. % 1© We perform
Monte Carlo simulations on a uniform nonabsorbing and isotropic scattering slab (the anisotropic factor
of scattering g = 0). The units of length of time are chosen such that the mean scattering length
Is = 1/ps = 1 and the speed of light ¢ = 1. The transport mean free path is hence /; = 1 and the
thickness of the slab is assumed L = 80l;. An absorption spherical site is located at the center of
the slab (0,0, L/2) with radius R whose absorption and scattering coefficients are pqo = Sp, == 0.01
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Figure 4. The self propagator Neir(w = 0; R) and its estimator. The diffusion self-propagator for continuous
waves is also plotted.

and pg2 = p. respectively. The photon is incident at the origin on the left boundary of the slab
z = 0 in the normal direction of the surface. Each photon is traced until it escapes the slab through
either the left or the right boundary. The correlated sampling is used in simulation to reduce variance.
A single simulation is used to compute the emitted photon density Iy for the uniform background
(nonabsorption slab) and I for the slab with the absorption site present.

The nonlinear correction factor [1 + Nyeie(w; R)V 8o (F)] ™" in Eq. (22) can be extracted from the
change of the detected light intensity due to the presence of the absorption site in Monte Carlo sim-
ulations according to Eq. (2). Fig. (5) plots the theoretical nonlinear correction factor and that from
Monte Carlo simulations. “Back” and “Forward” denote the cases where 'light emits from the left
(z=0) and the right (z = L) boundarics, respectively. The agreement between our theoretical result
and Monte Carlo simulations is excellent except for extremely small sizes of inhomogeneities.

Figs. (6) and (7) plot the nonlinear correction factor versus the variation of the modulation frequency
of light for a fixed absorption strength and versus the size of the absorption site with a fixed modulation
frequency of light respectively. With the increase of the modulation frequency of light, the nonlinear
correction becomes less accentuated. The dependence on the size of the inhomogeneity is no longer
monotonic for modulated light while the nonlinear correction factor decreases monotonically with the
increase of the size for continuous wave light. The phase delay is in the order of a few degrees in the
cases investigated.

The typical value of the absorption coefficient of human tissues is around 0.001ps™! while the
scattering coefficient is about 1ps~!. Hence the absorption and scattering ratio is in the order of 0.001.
This should be compared to our results listed here where the corresponding ratio is 0.01 and one order
of magnitude stronger. The nonlinear correction factor for absorption inhomogeneities such as tumors
in human tissues is not appreciable unless the size of the inhomogeneity is R ~ 5[, or larger.
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Figure 5. The nonlinear correction factor from the theoretical self-propagator Eq. (19) and Monte Carlo simu-
lations. “Back” and “Forward” denote light emitting from the left (z=0)and the right (z = L) boundaries. The

excess absorption is du, = 0.01.
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Figure 6. The nonlinear correction factor versus the variation of the modulation frequency of light. The size of
the absorption sphere is R = 3l;. The excess absorption is ép, = 0.01. .
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Figure 7. The nonlinear correction factor versus the variation of the size of the absorption site. The modulation
frequency of light is w = 0.1. The excess absorption is du, = 0.01.

In conclusion, we have derived an analytical expression for the nonlinear correction factor which
agrees well with Monte Carlo simulations. The effect of the nonlinear multiple passage of an absorption

site on optical imaging only becomes appreciable when the size of the mhomogene1ty is 5l; or larger
for human tissues.

APPENDIX A. DERIVATION OF Nggr(R,T)

The spatial Fourier transform of (4) is given by

N(k, tjro,sq) = /d3r exp(—ik - r)N(r, t|rg,s0) = exp (—Ic2D(t)t — gt — ik - soA(t)\ . (23)
Hence, the effective propagator in spatial Fourier space at rg is expressed as

\ sin (kA(2))
Mot} ———

EA()
by averaging (23) over the propagation direction sy of light over the 4 solid angle. The effective
propagator in real space is then obtained by an inverse spatial Fourier transform of (24):

3 , , .
Neg(r,t) = /Z%Tl'){ﬁeXP(ik‘r)exp(—kzD(t)t— A smk(Z?t()t))

exp(~ptat) { {_(r_mt))z]_
(4my32(D(t)t)V/2rA(t) 4D(t)it

2 exp{~fqt) r2 4+ A@)?] . b rA(t)
@y 2DE 2raw) O | T T iD() 2Dty

Nug(k, 2) = 5; / d2soN (K, tlro. o) = exp [ ~k2D(2)t — (24)

(r+ A@®)*
T 4D(o)t

(25)
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1. Introduction

Over the past decade, the study of optical image reconstruction for biomedical imag-
ing and diagnostics has attracted considerable attention due to in part its potential for
noninvasive clinical applications.!”® Near-infrared light can probe the internal struc-
ture (absorption and scattering coefficients) of a highly-scattering turbid medium such
as human tissues by measuring scattered light around the medium. The propagation
of light in turbid media is governed by the radiative transfer equation.* Approxima-
tions based on truncation in the spherical harmonic expansion® or cumulant expansion
of the photon distribution function®7 are used in image reconstruction. However, the
numerical reconstruction is extremely complicated and coﬁlputational expensive even
after approximation and linearization of the forward problem.

One of the recent developments in optical tomography is to apply Fourier tech-
nique to analyze the light propagation in turbid media (so called “optica} diffraction
tomography”). Diffraction tomography may be traced back to Emil Wolf’s original
work of determination of the spatial distribution of the reffactive index from measure-
ments of the intensity transmission functions of holog‘rams.&g Diffraction tomography
has been extensively applied to imaging using ultrasound and micr’owave.m‘12 Re-
centl;y there are considerable effort to apply this diffraction technique to tomographic
imaging using diffuse photons;'*?% in particular, Schotland and Markel’s work. 617
The benefit of the diffraction formalism of optical imaging comes from the diago-
nalizatiohy of the point spread function (the Green’s function) in the spatial Fourier

space in presence of a translational invariance, yielding a significant simplification in




reconstruction.

Since light is highly scattered inside the turbid medium and very different spatial
distributions of the optical property in the medium may result in indistinguishable
observations, the reconstruction of the internal structure from scattered light based on
a forward model formulated in either the real space or the Fourier space (diffraction
tomography) is not unique and hence ill-posed.’® The inevitable photon counting
noise accentuates this problem further. A common practice is to add regularization
to stabilize the inversion process.

One of the most popular regularization methods was proposed by Tikhonov.?

Describe an imaging of a set of measurements b due to an internal structure f of a

medium as:

Af+n=b : (1)

in a framework of a linearized reconstruction where n is the noise involved in measure-
ment. Tikhonov seeks a best possible solution to Eq. (1) by solving an optimization

problem

mfin {1 Af — b|> + 22| L£||*} (2)

which balances the goodness of fit (the first term) and the closeness to the prior infor-
mation (the second term). Here, ) is the regularization parameter which determines
the ftrade-off and L is a penalty operator which draws the solution toward its null
space (chosen to approximate the prior information).2

An assumption of white noise in all the observations at one common level is

implicit in Eq. (2) whereas the noise presented in photor counting tends to be Poisson




and position-dependent, proportional to the square root of light intensity at each
detecting element in the shot-noise limit. Intuitively, regularization should consider
both the noise presented in observation and the prior information of the object.
| We will show in this paper a proper modeling of the noise improves the quality
of reconstruction. A generalized Tikhonov regularization formalism is used in image
~ reconstruction to incorporate both the prior informatiqn and the noise. Furthermore,
the optimal regularization parameter will be shown linked directly to the prior signal
to noise ratio (PSNR). |
This paper is organized as following. We will first review the diffraction tomog-
raphy using diffuse photons. We present an explicit regularized inversion formula for
diffraction image reconstruction after discussion of a genera.lized Tikhonov regular-
ization method. Computer simulation results are shown to demonstrate improvement
of the quality of reéonstruction by the new inversion formula using time-resolved
data with realistic noise added for reconstruction of a planar geometry using multiple

sources énd detectors.
2. Theory

A.  Optical diffuse diffraction tomography

The formalism for diffuse diffraction tomography has been given by various authors
in time- and frequency- domains.’® 517 Follow the Dirac notation used by Markel

and Schotland,® diffraction formalism of the optical imaging using diffuse photons is




reviewed here. The diffusion equation in time domain is
B; lu(t)) + H Ju(t)) = |S@)) (3)

where |u) is the energy density, the Hamﬂtonian H=-V. D(f)V + a(r), D(r)
and a(r) are fhe position-dependent diffusion and absorption coefficients, and |S) is
the source power density. This is the Schrodinger equation in imaginary time where
a(r) can be interpreted as the interaction potential and D(r) as the inverse of the

position-dependent mass. The evolution operator (the Green’s function) is given by
G = O(t) exp(—Ht) (4)

where ©(¢) is the Heaviside step function.

It is best to regard the diffusion equation (3) as an equation in a Hilbert space and
a basis of position r and time ¢ is used in Eq. (3). Some other commonly used basis
include the temporal frequency w and the lateral spatial frequency q. The rotation

from one basis to another can be facilitated using the following identities

fwaa = [wgte- fineee= [ogta=1

(w[t) = exp(iwt), {(qlp) = exp(—iq - p)

due to the closure property of the respective basis.

In one class of problems, the position-dependent diffusion and absorption coeffi-




cients D(r) and c(r) can be decomposed to D(r) = Dy+48D(r) and a(r) = ap+da(r)
where 5D'(r) and da(r) can be regarded as a perturbation to the values Dy and opofa
uniform background. The scattered field, i.e., the perturbation of the energy density,

due to the embedded inhomogeneities §D(r) and da(r), is given by
¢s = ¢ —do=Gu) — Golu) = ~GoLAHG, |u) (6)

to the first order Born approximation where @, is the energy density from unperturbed
uniform background, ¢ is the total energy density from the perturBed medium, and
AH = -V -6D(r)V + da(r).

Let’s restrict ourselves to a planar geometry which possesses a translational invari-
ance along the lateral directions. The Green’s function of a uniform planar geometry
has a form of
(pzt|Golp''t)y = G(t—t')m exp r—% — ot — t')] Gz(z, 2 t—t)

(7)
where Gz is the axial component of the Green’s function and dependent on the specific

boundary condition. Its diffraction counterpart is given by

(@|Gold#) = / (alp) @ (02 tGolp' 2t 0 (ol (®)

= Ot —t)exp [~(Dg* + a)(t — )] G.(2. 2, t — ')(27)%6(q — q)

Go(q. z.2/,t = ')(27)*6(q — )




by changing the basis p to q in time domain. The benefit of a diffraction formalism
with the lateral spatial frequency q is now clear that the Green’s function is diagonal
with respect to the basis and has a most simple formulation.

The scattered field is then expressed as:

$s(qa, qs, t—to) = —/tt dr /dZGo(Cld, 24, 2, =) (QazT|AH|qs27) Go(qs, 2, 25, T— o)
o

| (9)

from Eq. (6) using the identities (5) due to an incident “point” source {aszs) 0(t —to).

The operator (qqz7|AH|qs27) can be further evaluated in a similar fashion using (5).

This results in?®

0s(Qa, Qs, t — to) = — / dz [k 4(qa, s, 2)00(qa — q, 2) + £p(Qa, Qs, 2)D(qu — qs, 2)]

(10)

where the weight function for absorption and diffusion inhomogeneities is given by

¢ A
Ky = / drG(Qq, 24, 2,t — T)G(qs, 2, 25, T — to) (11)
to .
t o o
Kp = dr I-ac(qd)‘d,-zvt T) aG(q87zvzsaT tO)
to - 0z Oz

+qs : qu(qda 24,2, t— T)G(Qs; 2, %5, T — tO)] .

After performing a variable change,

P +q/2 (12)

P—q/2



the forward problem can be rewritten as an integral equation

¢s(p + Q/2a P- q/2) = /dZ [K‘A(pa q, z)5a(q, Z) + K’D(p’ q, Z)éD(q, 2)] (13)

up to a constant multiplier (—1 here). The equation (13) defined an independent
integral eql;ation of da(q, z) and 6D(q, z) for each fixed q in the form of Eq. (1). The
corresponding result in frequency domain is obtained replacing the integral over time
by a factor 2m6(wy — w;) and changing t — 7 and 7 — £, to wg and w;, respectively,

which had been given in Markel and Schotland.®

The formal inversion formula for Eq. (13) with a fixed q is given by

ba(q,z) = / PP (AT Q)| K4(P 0 )60 + /2,0 — a/2)  (14)

6D(q,2) = / p'dz (AT Q)Y (0, 0, 2)6(p + a/2, P — a/2)
where
(IT(@)]) = / PP (K4 (P, a4, 2)ra(P, 0, 7) + Kp(Dr a4 Den(py 0, 7). (15)

This can be verified by substitution of Eq. (14) into Eq. (13). This is the Moore-
Penrose gencralized inverse of the linear system (13).2!

The incident Fourier “point” source: |q,z,) d(¢ —¢,) in time domain or

q,2sws) in
frequency domain can be generated from a spatially modulated mask under illumi-

nation of a plane wave, or by Fourier transform of an array of point sources.



A scheme is given in Fig. (1) wherg a point source scans grid by grid covering
th¢ input window and the emitted light on the exit window is captured by a CCD
camera in a planar geometry.

We proceed to provide a regularized version of the above solution (14) after

introduction of a generalized Tikhonov regularization method.

B.  Generalized Tikhonov regularization

The inverse problem of the form of Eq. (1) is ubiquitous and regularization is usually
required to stabilize the inverse process. As we have pointed out in the introduction,
the standard Tikhonov regularization scheme assumes implicitly an uniform distribu-
tion of white noise in all observations which contradicts with the position-dependent
noise of photon counting from detecting elements in optical imaging.

An intuitive way of dealing the inverse problem Eq. (1) is to regard f, n and
b as a realization of Gaussian weak random variables f, n and b in the Hilbert
space L*(R).22 A Gaussian weak random variable is uniquely determined by its mean
element and covariance operator. Under the assumptions that f and n have zero mean
and uncorrelated, and that the covariance operator Ry, has a bounded inverse, the
best linear estimate of f, namely Cyb, which minimizes the mean square error, was

shown by Viano et. al.?* as
Co = RffA*(ARffA* + Rn.n)._l (16)

where a superscript “x” means hermitian and the covariance is defined as R, =




E{[z — E(z)] [y — E(y)]"}. This formula is derived by minimizing the mean square
error and closely connected with the Kalman filter theory.?* It is éasy to verify that

Cy can be rewritten in a more familiar form:
Co=(A"R;A+R;})'A*R;. (17)
Let’s introduce:

‘R = 0°V, trace(V) =1 (18)

R;; T2(L*L)7},  trace((L*L)™Y) =1

where o and 7 can be interpreted as the magnitudes of the noise and the prior signal

respectively. Eq. (17) yields
02
Co=(A"VT A+ ZL L) AV, (19)

The linear estimate Cob is now recognized as the solution of a generalized Tikhonov

regularization problem:2
P f *yr—1 o’ ! 2]
argmin ' (Af — b)*V 1 Af - b) + = WLE| ' . (20)
£

Moreover, the choice of the regularization parameter A\ = o/7 must be optimal for
this inverse problem with the prescribed noise covariance and prior information (18)

since Cpb is the best estimator. The standard Tikhonov regularization responds to
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the case where V' = I where I is an identity matrix. The penalty term is commonly
set also to an identity matrix in the standard Tikhonov regularization.2’

"This shows that the inverse of the optimal regularization parameter \*:

trace (Ryy)

1/A*=PSNR =7/0 = trace (Bny)

(21)

is linked directly to the prior signal to noise ratio (PSNR). The value of the optimal
regularization parameter is proportional to the magnitude of the noise and inverse
proportional to the magnitude of the prior signal. Note PSNR is different from the

conventional signal to noise ratio (SNR) which usually means the ratio of magnitudes

of noiseless observation to noise.

C. Noise analysis and reqularized diffraction reconstruction

Measurements captured by the CCD camera on the exit window is noise contami-
nated. The noise is Poisson with its variance given by Var [n(pq, Ps)] = b(pg, ps) in
the shpt noise limit. Here we have assumed the detector element has a unit size one
and b(pq, p) is the count of photons on the py detecting element from a point source

at p,. The covariance of the noise in our Fourier space is thus

Fntasamay) = E |{Quinlas) (@G| - B (adnla)] E [Tamig)] (22)

==./dﬁufpﬁmpkﬂqd—q9~pd+ﬂqs—qQ-pJVMbﬂppr]

= (qz — qylblas — q.),




assuming that the noise at different pixels and from different sources is independent.
One important consequence of this noise covariance (22) is that the noise covari-

ance

Rnn(Q) = Rp(apann(a,a)y Wherequ—qs=q;—q. =q (23)

~ in one subspace of a fixed q is circulant and symmetric. This vields

BlRm(@)lp) = / (plo) & (p|Al) 0 (0'|p) (24)

where

(plAlp") = Sb(p, 0)5(p - p') (25)

is diagonal. The inverse of R,,(q) is then simply given by

(PIR (@)lp)) = / {plp) @p {pIA~H|p") &P (P|D') (26)

where

(plA~p") = §712(p,0)3(p — p). (27)

This can be easily verified by evaluating [ (p|Rn,(q)|p") é—i%} (P'| R (Q)lp”) = (p|p").

The generalized Tikhonov reconstruction of our formal solution (14) can now be




regularized to

do(q, 2)

0D(q, 2)

from Eq. (19) where

(| Tres(@)]) = / Ppdp [4(p,q, 2) (PRI @IP) ka(P 0, )+ (29)

Kp(P, 4, 2) (PR (QIP') kp (P, 4. 2)] + (21 B;} (@)l

and (p|R;2(q)|p') is given by Eq. (26).

Image reconstruction is carried out by first obtaining da(q, z) and 6D(q, z)vfor
each q by Eq. (28) formulated in subspace q. The perturbations in absorption and
diffusion coefficients in real space are obtained from an inverse Fourier transform

afterwards.

D.  Prior information and reqularization

The prior signal covariance R £+ or equivalently, the penalty term L in Eq. (18), should
be chosen according to the prior information. For simplicity, we will only consider the
absorption inhomogeneity dcx(r) herc. If the prior signal da(r) is assumed to be not
correlated between different voxels in real space, corresponding to a choice of L = I

where I is an identity matrix, the prior signal covariance in the Fourier space is then

/ d*p'd’p"dY (2|T 5 (@)|2) k4(p', a0, 7) (P| Ry (@)Ip”) 6(P” + a/2, D" — q/2)

/ d*p'dPp"de (2lTg (@12) 55 (', 0, 2) (D1 B (@)P”) $(P” + a/2, " — q/2)

(28)



given by:

Rsa(q,2)60(ar,z) = 0(z—2) / Epexp [—i(q— ) - p)] Var[da(p,2)], (30)

analog to the derivation of the noise covariance (22). The prior signal to noise ratio

in a subspace q is found to be

o1 | [ dBrVar[ba(r)]
PSNR = S \/ T oblp.0) (31)

independent of q where S gives the dimensionality (the total number of values of p)
of the subspace.

This mandates a common regularization parameter to be used in all subspaces q
from the optimal regularization criterion (21). As the magnitude of the prior signal
is usually unknown, additional regularization parameter choice rules, such as the L-
curve method,”® must also be invoked. The regularization parameter in this paper is
obtained by locating the L-corner of the global L-curve (2 gl p(Q)]|? vs pIN In(a)?

where p(q) and 7(q) are the residue of error and the size of solution respectively in

* the subspace q).

The generalized Tikhonov regularization does not restrict the prior signal covari-
ance (or the penalty term) to be an identity matrix. Some other forms of the penalty
term is also commonly used, including a matrix of suitably weighted first or second

order differences for a prior smooth signal?® and spatial variant version.2” In this pa-
g P b

per, we will test both the identity and the first order differential penalty in image



reconstruction.

3. Results

To demonstrate our regularized solution, we perform computer simulations using a
time-resolved scanning source scheme [see Fig. (1)]. Without losing generality, we will
assume a uniform distribution of diffusion coefficient, i.e., §D = 0. In our simulations,
the input and exit windows are divided into 21 x 21 grids and 20 grids along the axial
direction. Each voxel has a volume of 3 x 3 x 1.5mm3. The distance between the
mnput and exit windows of the slab is 30mm. The medium assumes a refractive index
1.38, an absorption_coefﬁcient 0.003mm™ and transport inean free path 1.25mm,
comparable to those found in a tvpical human breast.

Two. absorptive inhomogeneities are located at (14, 14, 10) voxel with 100% in-
crease in absorption than that of background and at (5,5, 15) voxel with 50% increase
in absorption than that of background. Poisson noise is added to the simulated photon
counts. Note, the added noise is proportional to the square root of the total photon
counts @o + ¢ with the absorbing objects embedded and not the scattered field @s.
Only snapshots of photon counts at time delay of 400ps are used in the image recon-
struction here as we are most interested to see the effect of modeling of noise on the
quality of image reconstruction. Inclusion of different time delays is beneficial to the
reconstruction.

To quantify the noise added in the simnlation, we define the signal to noise ratio




3t

(SNR) and the effective signal to noise ratio (SNR’) in our simulation as

> pe 20, 190(Pe, P5) + 65 (Par p)
>0, 2, 12(0a, o)

>0 3. b6(0as 05)I°

S0 5 n(oe o)

SNR'(dB) = 10log

where ¢o(p4, ps) is the noiseless obéervation at pqg from a point source at p, in the
uniform background and ¢;(pg, p;) is the perturbation of this observation due to the
existence of the inhomogeneities. Our simulation is performed with SNR = 80dB,
and an effective SNR' = 4.4dB. This hoise is significant as the total amount of the
scattered field is less than that of noise. One sample profile is given in Fig. (2) to
show the degree to which the scattered field o, is affected by the added Poisson noise.

The reconstruction result using the standard Tikhonov regularization is shown in
the following figures. Fig. (3) gives the L-curve (the residue of error ||p||? = |Ax — b||?
vs the size of solution ||n||*> = I||%). The L corner suggests an optimal regularization
parameter to be about 0.2. This turns out to agree with the inverse of the pﬁor signal
to noise ratio PSNR™! = 0.2 calculated using Eq. (31). The reconstruction result
using this regularization parameter A = 0.2 is given in Fig. (4). The two inhomo-
geneities at (14,14,10) and (5,5, 15) are resolved with a correct central position and
minimal blurring over the transversal direction. Their axial position, however, is not
resolved as well as in the transversal direction. The axial central position of the first
inhomogeneity (14,14, 10) is resolved to be on t.hé rigflt layer while the second one

(5,5,15) peaks on the layer 17 rather than the right one (layer 15). Both resolved in-




homogeneities expand considerably over the axial direction. As a result, the resolved
absorption coefficients are only a fraction of the input values (100% and 50% are
expected for the first and second inhomogeneities respectively).

The reconstruction result for the same data using the generalized Tikhonov reg-
ularization with an identity penalty (L = I) is shown in the following figures. Fig. (5)
gives the L-curve (the residue of error ||pf|® = (Ax — b)*V1(Ax — b) vs the size of
solution |n]®> = ||x]|?). The optimal regularization parameter suggested by the L cor-
ner agrees with PSNR™ again, both pointing to A = 0.2. The reconstruction result
using this optimal regularization parameter is given in Fig. (6). Comparing to the
reconstruction given by the standard Tikhonov regularization in Fig. (4), noticeable
nnprovement is observed in the resolution of the axial position of the second inhomo-
geneity which peaks now around layers 16 and 17. closer to the right value (layer 15).
The ratio ‘between the resolved absorption coefficients of the two inhomogeneities is
also closer to that of the input values.

A second generalized Tikhonov reconstruction is performed with a first order
differential operator penalty on the same data. Fig. (7) gives the L-curve (the residue
of error ||p||* = (Ax — b)*V~=1(Ax — b) vs the size of solution ||| = |l Lx|®). This
L-curve is not as well formed as the previous two other L-curves given in Figs. (3)
and (5). The regularization parameter A = 0.2 is shown on the L-curve figure which
is now to the left of the L-corner. The reconstruction result using the regularization
parameter A = 0.2 is given in Fig. (8). The axial position of the two inhomogeneities is
now correctly resolved. Narrower axial profiles are observed for both inhomogeneities

(widths at half peak of 8 lavers for both inhomogeneities compared to a width of
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half peak of 12 layers for the first inhomogeneity and a half width of peék of 7
layers for the second inhomogeneify using the generalized Tikhonov regularization
with an identity penalty). in addition, the resolved absorption coefficients are more
closer to the input values (peak values of 0.115 and 0.108 are obtained for the two
inhomogeneities respectively).

A “better” reconstruction can be obtained by using an aggressive regularization
- parameter A = 0.02 at the expense of a degraded smoothness of the reconstruction
[see Fig. (9)]. In addition to the correct resolution of the lateral and axial position of
both inhomogeneities, the resolved absorption coefficients over that of the background
da/op now approach 0.31 and 0.19 for the first and second inhomogeneities respec-
tively, the best among all the reconstructions. These resolved peak values correspond

to 31% and 38% of the input values respectively.

4. Discussion

Our results of computer simulation of reconstruction inside a planar geometry demon-
strated the importance of modeling correctly the noise presented in measurements.
With a proper modeling of the Poisson noise and an appropriate regularization, a bet-
ter axial localization and optical property reconstruction ié obtained in our simulation
with realistic noise added.

The performance of the standard Tikhonov regularization is not as good as the
generalized version but not so bad in the diffraction tomography thanks to the special
form of the noise covariance R,,(q) in a subspace g. The most significant elements of

the noise covariance R,.(q) given in Eq. (24) is along the diagonal and of the same
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value. The Fourier transform of the observation data in a diffraction tomography in
effect whitens the noise. This hence allows an approximation of the noise covariance
in the form of an identity matrix, which happens to be used by the standard Tikhonov
regularization. Optical imaging using diffus¢ photons, in general, needs to consider
the noise explicitly.

The appropriate regularization for an inverse problem is an art rather than sci-
ence.? The linkage between the optimal regularization parémeter and the prior signal
to noise ratio (PSNR) may provide valuable guidance in the choice of the regulariza-
tion parameters. The fact that the optimal regularization parameter is proportiohal
to the noise magnitude and inverse proportional to the prior signal is consistent with
intuitions. Even in the absence of known prior signal which is usually the case, this
li;lkage helps to choose the optimal regularization parameter. In our computer simu-
lation, all the regularization parameters in different subspace q are set to the same
value according to this criterion. We have also observed that a first order differen-
tial penalty performs better than an identity penalty in the generalized Tikhonov
regularization method for optical image reconstruction using diffuse photons.

The explicit inversion formula developed iu this paper is different frorﬁ that pro-
posed by Markel and Schotland.!® We formed our inversion formula based on a gener-
alized Tikhonov regularization formula (19). We reduced the image reconstruction to
a series of one dimensional inverse problem of the dimension of the number of discrete
divisions in the axial direction, compared to a series of two dimensional inversion of
a plane with a fixed axial location used in Ref. 16. The number of operations re-
quired increases only linearly with the total number of detector-source pairs in our
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formulation and can be easily extended to use the cumulant approximation of photon
migration'in turbid media.®” Another strength is the flexibility in choosing a suitable
penalty term. We also want to point out thét the inversion formula in Ref. 16 can
be enhanced to include the noise and prior information terms using the best linear
estimator given in Eq. (16), which will be studied later.

In summary, an explicit regularized inversion formula for a three-dimensional

diffraction tomographic imaging using diffuse photons is derived. This approach in-

- corporates both the prior information and the noise explicitly using a generalized

Tikhonov regularization scheme in which the optimal regularization parameter links
directly to the prior signal to noise ratio. Proper modeling of noise and appropriate
rogulérization is shown to improve the quality of image reconstruction of the optical
diffraction tomography.

This work is partly supported by US Army Medical Research and Materiels Com-
mand, NASA IRA, DOE Center for Laser Imaging and Cancer Diagnostics, and
CUNY organized research programs. One of the authors (M. Xu) thanks the support
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